Discrete neural network for solving general quadratic programming problems

نویسنده

  • VALERI MLADENOV
چکیده

Abstract: Quadratic programming problems are widespread class of nonlinear programming problems with many practical applications. The case of inequality constraints have been considered in a previous author’s paper. Later on an extension of these results for the case of inequality and equality constraints has been proposed. Based on equivalent formulation of Kuhn-Tucker conditions, a new neural network for solving the general quadratic programming problems, for the case of both inequality and equality constraints has been presented. In this contribution a discrete version of this network is proposed. Two theorems for global stability and convergence of this network are given as well. The presented network has lower complexity and it is suitable for FPGA implementations. Simulation results based on SIMULINK® models are given and compared.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Recurrent Neural Network for Solving Strictly Convex Quadratic Programming Problems

In this paper we present an improved neural network to solve strictly convex quadratic programming(QP) problem. The proposed model is derived based on a piecewise equation correspond to optimality condition of convex (QP) problem and has a lower structure complexity respect to the other existing neural network model for solving such problems. In theoretical aspect, stability and global converge...

متن کامل

An efficient modified neural network for solving nonlinear programming problems with hybrid constraints

This paper presents ‎‎the optimization techniques for solving‎‎ convex programming problems with hybrid constraints‎.‎ According to the saddle point theorem‎, ‎optimization theory‎, ‎convex analysis theory‎, ‎Lyapunov stability theory and LaSalle‎‎invariance principle‎,‎ a neural network model is constructed‎.‎ The equilibrium point of the proposed model is proved to be equivalent to the optima...

متن کامل

A dynamic programming approach for solving nonlinear knapsack problems

Nonlinear Knapsack Problems (NKP) are the alternative formulation for the multiple-choice knapsack problems. A powerful approach for solving NKP is dynamic programming which may obtain the global op-timal solution even in the case of discrete solution space for these problems. Despite the power of this solu-tion approach, it computationally performs very slowly when the solution space of the pr...

متن کامل

A Recurrent Neural Network Model for Solving Linear Semidefinite Programming

In this paper we solve a wide rang of Semidefinite Programming (SDP) Problem by using Recurrent Neural Networks (RNNs). SDP is an important numerical tool for analysis and synthesis in systems and control theory. First we reformulate the problem to a linear programming problem, second we reformulate it to a first order system of ordinary differential equations. Then a recurrent neural network...

متن کامل

An efficient simplified neural network for solving linear and quadratic programming problems

We present a high-performance and efficiently simplified new neural network which improves the existing neural networks for solving general linear and quadratic programming problems. The network, having no need for parameter setting, results in a simple hardware requiring no analog multipliers, is shown to be stable and converges globally to the exact solution.Moreover, using this network we ca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005